220k views
20 votes
Metallic spheres of radii 6 cm, 8 cm and 10 cm, respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.

Kindly help!​

User Unbekant
by
5.8k points

1 Answer

11 votes


{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

★ Radius of first sphere
\sf r_(1) = 6cm.

★ Radius of second sphere
\sf r_(2) = 8cm.

★ Radius of third sphere
\sf r_(3) = 10cm.


{\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}}

★ The radius of the resulting sphere formed.


{\large{\textsf{\textbf{\underline{\underline{Formula \: used :}}}}}}


\star \: \tt Volume \: of \: sphere = {\underline{\boxed{\sf{\red{ ( 4)/(3)\pi {r}^(3) }}}}}


{\large{\textsf{\textbf{\underline{\underline{Concept :}}}}}}

★ As, three spheres are melted to from one new sphere. Therefore, volume of three old sphere is equal to volume of new sphere.

i.e, Volume of first sphere + volume of second sphere + volume of third sphere = Volume of new sphere.


{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Let,

The radius of resulting sphere be
R

According to the question,

Volume of first sphere + volume of second sphere + volume of third sphere = Volume of new sphere.


\longrightarrow \sf (4)/(3) \pi {(r_(1))}^(3) + (4)/(3) \pi {(r_(2))}^(3) + (4)/(3) \pi {(r_(3))}^(3) = (4)/(3) \pi {(R)}^(3)

• here


\: \sf r_(1) = 6cm


\: \sf r_(2) = 8cm


\: \sf r_(3) = 10cm

Putting the values,


\longrightarrow \sf (4)/(3) \pi {(6)}^(3) + (4)/(3) \pi {(8)}^(3) + (4)/(3) \pi {(10)}^(3) = (4)/(3) \pi {(R)}^(3)

Taking "
(4)/(3) \pi" common,


\longrightarrow \sf (4)/(3) \pi \bigg[ {(6)}^(3) + {(8)}^(3) + {(10)}^(3) \bigg] = (4)/(3) \pi {(R)}^(3)


\longrightarrow \sf \cancel{ (4)/(3) \pi} \bigg[ {(6)}^(3) + {(8)}^(3) + {(10)}^(3) \bigg] = \cancel{ (4)/(3) \pi } {(R)}^(3)


\longrightarrow \sf \bigg[ {(6)}^(3) + {(8)}^(3) + {(10)}^(3) \bigg] = {(R)}^(3)


\longrightarrow \sf \bigg[ 216 +512 + 1000 \bigg] = {(R)}^(3)


\longrightarrow \sf 1728 = {(R)}^(3)


\longrightarrow \sf \sqrt[3]{1728} = R


\longrightarrow \sf \sqrt[3]{ 12 * 12 * 12 } = R


\longrightarrow \sf \sqrt[3]{ {(12)}^(3) } = R


\longrightarrow \sf R = \red{12 \: cm}

Therefore,

Radius of the resulting sphere is 12cm.


{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

★ Figure in attachment.


{\underline{\rule{290pt}{2pt}}}

Metallic spheres of radii 6 cm, 8 cm and 10 cm, respectively, are melted to form a-example-1
User The Minion
by
5.6k points