![{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/college/jeqy83zf3omxwer3h2rxeepliwgwe2fkui.png)
★ Radius of first sphere
= 6cm.
★ Radius of second sphere
= 8cm.
★ Radius of third sphere
= 10cm.
![{\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/college/ayltkjw3soiissyus3lo2ksfr2jjhrewsp.png)
★ The radius of the resulting sphere formed.
![{\large{\textsf{\textbf{\underline{\underline{Formula \: used :}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/g76ty297us5d92ckfkiofec6s6jp11jtpy.png)
![\star \: \tt Volume \: of \: sphere = {\underline{\boxed{\sf{\red{ ( 4)/(3)\pi {r}^(3) }}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tqf91q3zk3pd95u3ua1uwpk1m6tv3fvrnz.png)
![{\large{\textsf{\textbf{\underline{\underline{Concept :}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3qr1pozp7hmyewlbki43krf1bawptasyky.png)
★ As, three spheres are melted to from one new sphere. Therefore, volume of three old sphere is equal to volume of new sphere.
i.e, Volume of first sphere + volume of second sphere + volume of third sphere = Volume of new sphere.
![{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/college/5rb1jp0ldr3s5xp5jm4vm9rs9qvdmcusij.png)
Let,
The radius of resulting sphere be
![R](https://img.qammunity.org/2023/formulas/physics/high-school/qvvxux2yshxcko9scc9aq0akixlsw81whf.png)
According to the question,
• Volume of first sphere + volume of second sphere + volume of third sphere = Volume of new sphere.
![\longrightarrow \sf (4)/(3) \pi {(r_(1))}^(3) + (4)/(3) \pi {(r_(2))}^(3) + (4)/(3) \pi {(r_(3))}^(3) = (4)/(3) \pi {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tfe69q2hhq3rh8a9ul8qyrkfstuskjqg9w.png)
• here
☆
= 6cm
☆
= 8cm
☆
= 10cm
Putting the values,
![\longrightarrow \sf (4)/(3) \pi {(6)}^(3) + (4)/(3) \pi {(8)}^(3) + (4)/(3) \pi {(10)}^(3) = (4)/(3) \pi {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nuwfk55j73kuambmnepcisjpghi6wwvcmj.png)
Taking "
" common,
![\longrightarrow \sf (4)/(3) \pi \bigg[ {(6)}^(3) + {(8)}^(3) + {(10)}^(3) \bigg] = (4)/(3) \pi {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/b3bovt32d0hc17nthyidy8jiny3wzk6wms.png)
![\longrightarrow \sf \cancel{ (4)/(3) \pi} \bigg[ {(6)}^(3) + {(8)}^(3) + {(10)}^(3) \bigg] = \cancel{ (4)/(3) \pi } {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/imcr0fn77ub8xhweed7w4pux9vsx1gau6p.png)
![\longrightarrow \sf \bigg[ {(6)}^(3) + {(8)}^(3) + {(10)}^(3) \bigg] = {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/b4n3dmid9ipi0prpugjuqgg9z1vxiocjy4.png)
![\longrightarrow \sf \bigg[ 216 +512 + 1000 \bigg] = {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/e1ivssw73knvh9gk93y4nuq2quucasjck1.png)
![\longrightarrow \sf 1728 = {(R)}^(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tdyg25hkkjoyiaiazle3r55z7mh8ex7n2n.png)
![\longrightarrow \sf \sqrt[3]{1728} = R](https://img.qammunity.org/2023/formulas/mathematics/high-school/rax6xoq1oro5m85v2udaxgotlgx090khlm.png)
![\longrightarrow \sf \sqrt[3]{ 12 * 12 * 12 } = R](https://img.qammunity.org/2023/formulas/mathematics/high-school/fzudc81omxs0iyijjgklvxhan6pvpmkf18.png)
![\longrightarrow \sf \sqrt[3]{ {(12)}^(3) } = R](https://img.qammunity.org/2023/formulas/mathematics/high-school/3crodm5y7p4zl4pevymm8e3sfdl6i5obyl.png)
![\longrightarrow \sf R = \red{12 \: cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ropm2vwhoanxxt6e463kvrbd65vm2p0bi1.png)
Therefore,
Radius of the resulting sphere is 12cm.
![{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nrp9k4sznoku9kdwun4uyf6du3q0kr0244.png)
★ Figure in attachment.
![{\underline{\rule{290pt}{2pt}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h7vjfyhrc3hdl9ytpq89w5wslua165z961.png)