197k views
5 votes
Prove the divisibility:

45^45·15^15 by 75^30

User MoiTux
by
6.3k points

1 Answer

2 votes

Answer:


3^(75).

Explanation:

We have been an division problem:
(45^(45)*15^(15))/(75^(30)).

We will simplify our division problem using rules of exponents.

Using product rule of exponents
(a*b)^n=a^n*b^n we can write:


45^(45)=(9*5)^(45)=9^(45)*5^(45)


15^(15)=(3*5)^(15)=3^(15)*5^(15)


75^(30)=(15*5)^(30)=15^(30)*5^(30)

Substituting these values in our division problem we will get,


(9^(45)*5^(45)*3^(15)*5^(15))/(15^(30)*5^(30))

Using power rule of exponents
a^n*a^m=a^(n+m) we will get,


(9^(45)*5^((45+15))*3^(15))/(15^(30)*5^(30))


(9^(45)*5^(60)*3^(15))/(15^(30)*5^(30))

Using product rule of exponents
(a*b)^n=a^n*b^n we will get,


((3*3)^(45)*5^(60)*3^(15))/((3*5)^(30)*5^(30))


(3^(45)*3^(45)*5^(60)*3^(15))/(3^(30)*5^(30)*5^(30))

Using power rule of exponents
a^n*a^m=a^(n+m) we will get,


(3^((45+45+15))*5^(60))/(3^(30)*5^((30+30)))


(3^(105)*5^(60))/(3^(30)*5^(60))


(3^(105))/(3^(30))

Using quotient rule of exponent
(a^m)/(a^n)=a^(m-n) we will get,


(3^(105))/(3^(30))=3^(105-30)


3^(105-30)=3^(75)

Therefore, our resulting quotient will be
3^(75).

User Clock
by
6.1k points