Answer:
see explanation
Explanation:
(4)
consider the left side
factor the numerator
cosx - cos³x = cosx(1 - cos²x)
/(sinx)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l0nacisi6ucwbenx77tvdvv5oab6nde8id.png)
cancel sinx on numerator/denominator
= cosxsinx =right side ⇒ verified
(5)
Consider the left side
expand the factors
(1 + cotΘ)² + (1 - cotΘ)²
= 1 + 2cotΘ + cot²Θ + 1 - 2cotΘ + cot²Θ
= 2 + 2cot²Θ
= 2(1 + cot²Θ) ← 1 + cot²Θ = cosec²Θ
= 2cosec²Θ = right side ⇒ verified
(6)
Consider the left side
the denominator simplifies to
cosxtanx = cosx ×
= sinx

= sinx(
+
)
=
+

= tanx + 1 = right side ⇒ verified