Answer:
![\large\boxed{CU=118}](https://img.qammunity.org/2020/formulas/mathematics/high-school/3g2dr70jvdvll03ejoefe6vrc0enb5nvq8.png)
Explanation:
ΔUFW and ΔCDW are similar (AA). Therefore the siades are in proportion:
![(UW)/(CW)=(VW)/(DW)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1j5e0tnm73z46rd7yw59b203px8ukkgn58.png)
We have
UW = 36x-1
CW = 26
VW = 110
DW = 20
Substitute:
cross multiply
use distributive property
![(20)(36x)+(20)(-1)=2860](https://img.qammunity.org/2020/formulas/mathematics/high-school/z0y6zhilvnaapmeggtqtk9of8qko1q5ak0.png)
add 20 to both sides
divide both sides by 720
![x=4](https://img.qammunity.org/2020/formulas/mathematics/high-school/hxnxycp7ditjozikbfiiya3nb2g21vrzay.png)
![UW=36x-1\to UW=36(4)-1=144-1=143](https://img.qammunity.org/2020/formulas/mathematics/high-school/4e644m9lz7k3cgevr38htiw0z0gpopabqh.png)
CU = UW - CW
Susbtitute:
![CU=143-26=118](https://img.qammunity.org/2020/formulas/mathematics/high-school/m90v06euv9km6yangffoe2va7wixmi7aa6.png)