75.2k views
5 votes

(2y + {6y}^(4) ) - (7y + 8y ^(2) - {4y}^(4)


1 Answer

3 votes

Answer: y = 0 or y = 1/6 ((3 i) sqrt(263343) - 43877)^(-1/3) (((6 i) sqrt(263343) - 87754)^(2/3) + 1568 2^(1/3)) - 28/3 or y = -28/3 + 784/3 (-1)^(2/3) (1/2 ((3 i) sqrt(263343) - 43877))^(-1/3) - 1/3 (-1/2)^(1/3) ((3 i) sqrt(263343) - 43877)^(1/3) or y = 1/6 ((3 i) sqrt(263343) - 43877)^(-1/3) ((-2)^(2/3) ((3 i) sqrt(263343) - 43877)^(2/3) - 1568 (-2)^(1/3)) - 28/3

Solve for y over the real numbers:

-2 y (y^3 + 28 y^2 - 1) = 0

Divide both sides by -2:

y (y^3 + 28 y^2 - 1) = 0

Split into two equations:

y = 0 or y^3 + 28 y^2 - 1 = 0

Eliminate the quadratic term by substituting x = y + 28/3:

y = 0 or -1 + 28 (x - 28/3)^2 + (x - 28/3)^3 = 0

Expand out terms of the left hand side:

y = 0 or x^3 - (784 x)/3 + 43877/27 = 0

Change coordinates by substituting x = z + λ/z, where λ is a constant value that will be determined later:

y = 0 or 43877/27 - 784/3 (z + λ/z) + (z + λ/z)^3 = 0

Multiply both sides by z^3 and collect in terms of z:

y = 0 or z^6 + z^4 (3 λ - 784/3) + (43877 z^3)/27 + z^2 (3 λ^2 - (784 λ)/3) + λ^3 = 0

Substitute λ = 784/9 and then u = z^3, yielding a quadratic equation in the variable u:

y = 0 or u^2 + (43877 u)/27 + 481890304/729 = 0

Find the positive solution to the quadratic equation:

y = 0 or u = 1/54 i (43877 i + 3 sqrt(263343))

Substitute back for u = z^3:

y = 0 or z^3 = 1/54 i (43877 i + 3 sqrt(263343))

Taking cube roots gives (i (43877 i + 3 sqrt(263343)))^(1/3)/(3 2^(1/3)) times the third roots of unity:

y = 0 or z = (i (43877 i + 3 sqrt(263343)))^(1/3)/(3 2^(1/3)) or z = -1/3 (-1/2)^(1/3) (i (43877 i + 3 sqrt(263343)))^(1/3) or z = ((-1)^(2/3) (i (43877 i + 3 sqrt(263343)))^(1/3))/(3 2^(1/3))

Substitute each value of z into x = z + 784/(9 z):

y = 0 or x = 784/(3 (1/2 i (3 sqrt(263343) + 43877 i))^(1/3)) + 1/3 (i/2 (43877 i + 3 sqrt(263343)))^(1/3) or x = (784 (-1)^(2/3))/(3 (1/2 i (3 sqrt(263343) + 43877 i))^(1/3)) - 1/3 ((-1)/2)^(1/3) (i (43877 i + 3 sqrt(263343)))^(1/3) or x = 1/3 (-1)^(2/3) (i/2 (43877 i + 3 sqrt(263343)))^(1/3) - (784 (-2)^(1/3))/(3 (i (3 sqrt(263343) + 43877 i))^(1/3))

Bring each solution to a common denominator and simplify:

y = 0 or x = ((6 i sqrt(263343) - 87754)^(2/3) + 1568 2^(1/3))/(6 (3 i sqrt(263343) - 43877)^(1/3)) or x = (784 (-1)^(2/3))/(3 (1/2 (3 i sqrt(263343) - 43877))^(1/3)) - 1/3 ((-1)/2)^(1/3) (3 i sqrt(263343) - 43877)^(1/3) or x = ((-2)^(2/3) (3 i sqrt(263343) - 43877)^(2/3) - 1568 (-2)^(1/3))/(6 (3 i sqrt(263343) - 43877)^(1/3))

Substitute back for y = x - 28/3:

Answer: y = 0 or y = 1/6 ((3 i) sqrt(263343) - 43877)^(-1/3) (((6 i) sqrt(263343) - 87754)^(2/3) + 1568 2^(1/3)) - 28/3 or y = -28/3 + 784/3 (-1)^(2/3) (1/2 ((3 i) sqrt(263343) - 43877))^(-1/3) - 1/3 (-1/2)^(1/3) ((3 i) sqrt(263343) - 43877)^(1/3) or y = 1/6 ((3 i) sqrt(263343) - 43877)^(-1/3) ((-2)^(2/3) ((3 i) sqrt(263343) - 43877)^(2/3) - 1568 (-2)^(1/3)) - 28/3


User Mike Tavish
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories