Answer: AH = 24 unit
Explanation:
Since, in triangles ABC and BHC,
( Right angles)
( Reflexive )
Hence, By AA similarity postulate,
![\triangle ABC\sim\triangle BHC](https://img.qammunity.org/2020/formulas/mathematics/college/9dkysnubieu09d0xc1nvsc5jag2b7fzalv.png)
By the property of similar triangle,
![(AC)/(BC) = (BC)/(HC)](https://img.qammunity.org/2020/formulas/mathematics/college/cix6jnfv38ematoxv2chv1bkkjx0tp8hb1.png)
![AC = BC* (BC)/(HC)](https://img.qammunity.org/2020/formulas/mathematics/college/m71jp9qz8yl2jz5ru8h6kwti56hqskifed.png)
![AC = (BC^2)/(HC)](https://img.qammunity.org/2020/formulas/mathematics/college/so7smjv4hxttwa1vx0xss6vac13hctl7ng.png)
Here, BC = 9 unit and HC = 3 unit,
![AC = (9^2)/(3)=(81)/(3)=27](https://img.qammunity.org/2020/formulas/mathematics/college/adgat8vzi51w0k6ds5fvg6egqrm30xczxh.png)
Since, by the below diagram,
AH = AC - HC
AH = 27 - 3
AH = 24 unit