Answer:
Option B. is the right answer.
Explanation:
We have to simplify the given fraction
![((1)/(4n)-(1)/(2))/((n)/(6)-(1)/(24n))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/krxerolc1z9pxghdcaxkb3okw9fyid79uq.png)
Now we will solve numerator first
![=((1-2n))/(4n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mn5r9l7xm4ayqdw2x4cqpa9cmz8sngorfv.png)
Then we will solve denominator
![=(n)/(6)-(1)/(24n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2kgzvyd9ke0zric2lf6wa9ruog091z0gvi.png)
![=(4n^(2)-1)/(24n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgxhht89tixuz0u9r52y2zkyczxqmu1lxx.png)
![=-(-4n^(2)+1)/(24n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/61jkdupcyid9q700hbrxvdudshk1sf1k85.png)
![=-((1-2n)(1+2n))/(24n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ahj1rhljxrsjz8bbb3tgrziljfzc19prx.png)
Now we put numerator and denominator in the form of a fraction.
![-((1-2n))/(4n)/ ((1-2n)(1+2n))/(24n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hmkvcy1zc2w9i63uzanf8rtl4ol43r7emc.png)
![=-((1-2n))/(4n)* (24n)/((1-2n)(1+2n))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yje6vmtcrd07c9sqog7urvqgk37lzukxmi.png)
![=-(6)/(2n+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rdpjdlwz23ld65jqs5jp0nehpntbdhoenl.png)
Therefore option B is the right answer.