Answer:
A is correct
Explanation:
The base of a solid in the region bounded by the two parabolas
and
.
Two parabola equation:
![y_1=(x^2)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/gxi5wh4c6xzqsg28rvq66game1ikf0cmlo.png)
![y_2=√(8x)](https://img.qammunity.org/2020/formulas/mathematics/college/v9ildc92ff0n8ohwsciyqix79fok29phl1.png)
Cross sections of the solid perpendicular to the x-axis are semicircles.
Diameter of semicircle
![=y_1-y_2=√(8x)-(x^2)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/vpzgmy29shc4hm7cl3j1btu9b8yar8hapv.png)
Radius of semicircle (r)
![=√(2x)-(x^2)/(16)](https://img.qammunity.org/2020/formulas/mathematics/college/ttmv1qmhm57t8ub9zgxos6mrdf23y7ka5l.png)
Thickness of solid
![=dx](https://img.qammunity.org/2020/formulas/mathematics/college/7sm8ot2r9mxtkvs8ygo4jfkm4l5w87iu7g.png)
Range of
![x: 0\leq x \leq 8](https://img.qammunity.org/2020/formulas/mathematics/college/9oa6kjihycaj2mbl0odyndpomxax1m4jju.png)
Volume of solid = Area of semicircle x Thickness
![V=\int_0^8(1)/(2)\pi\left ( √(2x)-(x^2)/(16) \right )^2dx\\\\V=\int_0^8(1)/(2)\pi\left ( 2x+(x^4)/(256)-(√(2)x^(3/2))/(8) \right )dx\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/dtzf08lpgv8xnff73nmnyhwxjx4waj54ao.png)
![V=(\pi)/(2)\left (x^2+(x^5)/(1280)-(2√(2)x^(5/2))/(40) \right )|_0^8](https://img.qammunity.org/2020/formulas/mathematics/college/ztvwrgzj7ch27mzfds6kxsnmimtovjz69l.png)
![V=(\pi)/(2)((576)/(35)-0)](https://img.qammunity.org/2020/formulas/mathematics/college/2z2bwc61yfpo3rqowrbjenipj6s1ua74u9.png)
![V=(288\pi)/(35)](https://img.qammunity.org/2020/formulas/mathematics/college/n875u54dbtqqdm29chhlpz3v1zvo72gqf9.png)
Hence, A is correct