Answer:
Option B
![f(x)=3(x-1)^(2)+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/t03i7jkh9dfflilrq6qeprzw7ybl8jeyu5.png)
Explanation:
we have
![f(x)=3x^(2) -6x+9](https://img.qammunity.org/2020/formulas/mathematics/high-school/20bh6ul1z3mla356gx9ahe9wyxuw6aa6gy.png)
Group terms that contain the same variable, and move the constant to the opposite side of the equation
![f(x)-9=3x^(2) -6x](https://img.qammunity.org/2020/formulas/mathematics/high-school/tehako85jlr3si9zidbapsfpvj7eouzuoq.png)
Factor the leading coefficient
![f(x)-9=3(x^(2) -2x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/48enn4gw02lmdroqg7xik5dvzlrxyirzvv.png)
Complete the square. Remember to balance the equation by adding the same constants to each side
![f(x)-9+3=3(x^(2) -2x+1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4zzazgysr6pmx78n6sczzxwlllcl1q4nkj.png)
![f(x)-6=3(x^(2) -2x+1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1m0sxho7t4hjb798xuv08lj9r3emeq02rr.png)
Rewrite as perfect squares
------> equation in vertex form
the vertex is the point
![(1,6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lvsq03hfdcx0urr50k70vfmrsx4ruzzm09.png)