Answer:
1. Terms are 17, 14, 11, 8, 5,...... and explicit equation is
.
2. Terms are 20, 10, 5, 2.5, 1.25,...... and explicit equation is
.
Explanation:
Ques 1: We are given the recursive formula for the sequence as,
, where
.
So, substituting the values of 'n' from {1,2,3,.....}, we get,
![a_(2)=a_(1+1)=a_(1)-3=17-3=14](https://img.qammunity.org/2020/formulas/mathematics/high-school/pgzubivt31wchn4eyp31wq3u1n1hhinlp3.png)
![a_(3)=a_(2+1)=a_(2)-3=14-3=11](https://img.qammunity.org/2020/formulas/mathematics/high-school/y0ms4k2u9mnarl4rbbpqga2ka1dh75ps0h.png)
![a_(4)=a_(3+1)=a_(3)-3=11-3=8](https://img.qammunity.org/2020/formulas/mathematics/high-school/s5rtpkstbtm771e7nfn6xm0orhw1hcqq92.png)
![a_(5)=a_(4+1)=a_(4)-3=8-3=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/ra8m4j58rji1h3hlqs5vh7eiu5en8ak2xk.png)
Thus, the sequence is given by 17, 14, 11, 8, 5,......
As, the explicit equation of an arithmetic sequence is of the form,
, where
is the first term and 'd' is the common difference.
As, the common difference, d = 14 - 17 = -3
Thus, we get,
The given sequence has the explicit equation,
.
Ques 2: We are given the recursive formula for the sequence as,
, where
.
So, substituting the values of 'n' from {1,2,3,.....}, we get,
![a_(2)=a_(1+1)=(a_(1))/(2)=(20)/(2)=10](https://img.qammunity.org/2020/formulas/mathematics/high-school/2j4wppmu0ue36exk8mvn9ulfqgw8fusqnl.png)
![a_(3)=a_(2+1)=(a_(2))/(2)=(10)/(2)=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/q7gzvh8wevc178wbqb0gk637pshp5vqal7.png)
![a_(4)=a_(3+1)=(a_(3))/(2)=(5)/(2)=2.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/i7xwg57d84x480d6wborc094qllukvu0w5.png)
![a_(5)=a_(4+1)=(a_(4))/(2)=(2.5)/(2)=1.25](https://img.qammunity.org/2020/formulas/mathematics/high-school/ih9dmk3eax7fz8rfhra71nx9v8gk0neihb.png)
Thus, the sequence is given by 20, 10, 5, 2.5, 1.25,......
As, the explicit equation of a geometric sequence is of the form,
, where
is the first term and 'r' is the common ratio.
As, the common ratio,
![r=(10)/(20)=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/k5lng91bl2932rg9n3tne6xzgt1efmbxlg.png)
Thus, we get,
The given sequence has the explicit equation,
.