228k views
5 votes
Find the area inside the cardioid r=5+4cos(θ)

User Drzymala
by
8.1k points

1 Answer

5 votes

Answer:

Explanation:

Given:
r=5+4cos{\theta}

Area inside the cardioid is given by: A=
\int\int\limits_D {r} \, drd{\theta}

=
\int_(0)^(2\pi)d\theta\int_(0)^(5+4cos\theta)rdr

=
(1)/(2)\int_(0)^(2\pi)d\theta(r^(2))_(0)^(5+4cos\theta)

=
(1)/(2)\int_(0)^(2\pi)(5+4cos\theta)^(2)d\theta

=
(1)/(2)\int_(0)^(2\pi)(25+16cos^2\theta+40cos\theta)

=
(1)/(2)\int_(0)^(2\pi)(25+8+8cos2\theta+40cos\theta)

=
(1)/(2)\int_(0)^(2\pi)(33+8cos2\theta+40cos\theta)

=
(1)/(2)(33\theta+16sin\theta+40sin\theta)_(0)^(2\pi)

=
(1)/(2)((33(2\pi))+16sin(2\pi))+40sin(2\pi))

=
33{\pi}

Thus, the area inside the cardoid=
33{\pi}

User AForsberg
by
7.9k points