Answer:
![\boxed{3\sqrt[4]{5}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/brk0reli5zt99c0uclueif9qualwo2qi6r.png)
Explanation:
The given quotient is
![\frac{\sqrt[4]{810} }{\sqrt[4]{2} }](https://img.qammunity.org/2020/formulas/mathematics/high-school/da8suhuaq0ylq6oi56wjqxkxkiznl9zr70.png)
We write one radical for the quotient to obtain;
![=\sqrt[4]{(810)/(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c52mmjeltibbhzf8al4ncxhyhdhakrvdqq.png)
We simplify the radicand (the expression under the radical sign) to obtain;
![=\sqrt[4]{405}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ceph9mv9fbepqbej1ej72zcr5499odsg5n.png)
Find the the prime factorization of the simplified radicand to get;
![=\sqrt[4]{3^4* 5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a3bpql9p4tyirc9gedii2h290874zujzup.png)
We now split the radical to get;
![=\sqrt[4]{3^4}* \sqrt[4]{5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ztlhckpohg7jqxha4cp5hyi69qryzck2ty.png)
This finally simplifies to;
![=3\sqrt[4]{5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1o8vfe7f94u62vz0w9kg4a85h9718u5a1y.png)