182k views
2 votes
Rationalize the denominators

Rationalize the denominators-example-1

1 Answer

3 votes

Answer:


(2√(3)+5√(2))/(3√(3)-2√(2)  ) is equal to
2+√(6)

Explanation:

Consider the given fraction,


(2√(3)+5√(2))/(3√(3)-2√(2)  )

We are required to rational denominator,

Multiply and divide numerator by
\Rightarrow (2√(3)+5√(2))/(3√(3)-2√(2)) * (3√(3)+2√(2))/(3√(3)+2√(2)) , we get,

Using identity ,
(a-b)(a+b)=a^2-b^2 in denominator, we get,


\Rightarrow (2√(3)+5√(2))/(3√(3)-2√(2)) * (3√(3)+2√(2))/(3√(3)+2√(2))=((2√(3)+5√(2))(3√(3)+2√(2)))/((3√(3))^2-(2√(2))^2))


\Rightarrow ((2√(3)+5√(2))(3√(3)+2√(2)))/((3√(3))^2-(2√(2))^2))=((2√(3)+5√(2))(3√(3)+2√(2)))/(27-8)\\\\\\\\

On solving further , we get,


\Rightarrow ((2√(3)+5√(2))(3√(3)+2√(2)))/((3√(3))^2-(2√(2))^2))=(38+19√(6))/(19)

solving , we get,


\Rightarrow (38+19√(6))/(19)=2+√(6)

Thus,
(2√(3)+5√(2))/(3√(3)-2√(2)  ) is equal to
2+√(6)

User Beluchin
by
4.1k points