63.8k views
0 votes
Find the exact values of a) sec of theta b)tan of theta if cos of theta= -4/5 and sin<0

User Tvo
by
6.1k points

1 Answer

3 votes

Answer:

Using trigonometric ratio:


\sec \theta = (1)/(\cos \theta)


\tan \theta = (\sin \theta)/(\cos \theta)

From the given statement:


\cos \theta = -(4)/(5) and sin < 0


\theta lies in the 3rd quadrant.

then;


\sec \theta = (1)/(-(4)/(5)) = -(5)/(4)

Using trigonometry identities:


\sin \theta = \pm √(1-\cos^2 \theta)

Substitute the given values we have;


\sin \theta = \pm\sqrt{1-((-4)/(5))^2 } =\pm\sqrt{1-(16)/(25)} =\pm\sqrt{(25-16)/(25)} =\pm \sqrt{(9)/(25) } = \pm(3)/(5)

Since, sin < 0


\sin \theta = -(3)/(5)

now, find
\tan \theta:


\tan \theta = (\sin \theta)/(\cos \theta)

Substitute the given values we have;


\tan \theta = (-(3)/(5) )/(-(4)/(5) ) = (3)/(5)* (5)/(4) = (3)/(4)

Therefore, the exact value of:

(a)


\sec \theta =-(5)/(4)

(b)


\tan \theta= (3)/(4)

User John Doucette
by
5.7k points