Answer:
Answers are :
x = 7.5 , y =
, z =
![(15√(3) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u1cgf9hp0kttpa2nyfd47xrpgpujfeucbm.png)
a = 9.375 and b = 5.625
Explanation:
From the attached figure , consider right triangle ABC.
∠B = 60° , BC = 15 {∵ BC = a + b}
We need to find AC = z
Using sin function,
i.e sin(60°) =
![(AC)/(BC)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bgpb07pgs230819lzvvwm08iz0suo3ee38.png)
or sin(60°) =
![(AC)/(15)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fm1732zkaa1g3pj18994udg33o3bxjlxkz.png)
or AC = 15×sin(60°)
or AC =
![(15√(3) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u1cgf9hp0kttpa2nyfd47xrpgpujfeucbm.png)
Also, AB = x = 15×cos(60°) =
![(15)/(2) = 7.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zw92jrp5a5rbsdgjmf19vwyrc6v26g502e.png)
Next,
Consider right triangle ADC
AD = y, AC = z =
![(15√(3) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u1cgf9hp0kttpa2nyfd47xrpgpujfeucbm.png)
∠C = 30°
Using sin function to get y.
i.e sin(30°) =
![(AD)/(AC) = (y)/(z)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ozbs8u11p9ykea8z7mblcxar1cfdzp5evj.png)
or sin(30°) = \frac{y}{
}[/tex]
or y =
×sin(30°)
or y =
![(15√(3) )/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q754er7khx0noerh4l18yndyhljj99o0vz.png)
Also, DC = b =
×cos(30°)
b =
![(45)/(8) = 5.625](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mmwny3745qcuu02di3swqvq8qshkhpvxx0.png)
Therefore, a= 15 - b = 15 - 5.625 = 9.375
Hence we got,
x = 7.5 , y =
, z =
![(15√(3) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u1cgf9hp0kttpa2nyfd47xrpgpujfeucbm.png)
a = 9.375 and b = 5.625