189k views
10 votes
\sqrt{27} - \sqrt{ 12} + \sqrt{48 }

User Nathanvda
by
3.9k points

1 Answer

4 votes

Answer:


5√(3)

Explanation:

I'm assuming you're asking for most simplified form?

Original Equation:


√(27) - √(12) + √(48)

Rewrite sqrt(27) using the exponent property:
\sqrt[n]{a} * \sqrt[n]{b} = \sqrt[n]{ab}


√(9) * √(3) -√(12) + √(48)

Simplify sqrt(9)


3√(3) -√(12) + √(48)

Rewrite the radical sqrt(12)


3√(3) -√(4)√(3) + √(48)

Simplify sqrt(2)


3 √(3) -2√(3) + √(48)

Rewrite the radical sqrt(48)


3√(3) -2√(3) + √(16)√(3)

Simplify the sqrt(16)


3√(3) -2√(3) + 4√(3)

You can think of sqrt(3) as x, in which case you have 3x - 2x + 4x, so you just add the coefficients and leave the sqrt(3) alone.

Subtract 2 from 3


1√(3) + 4√(3)

Add 1 and 4


5√(3)

User Djsmith
by
4.3k points