94.5k views
1 vote
Given (1+cosx)/(sinx) + (sinx)/(1+cosx) =4, find a numerical value of one trigonometric function of x.

a. tanx=2
b. sinx=2
c. tanx=1/2
d. sinx=1/2

2 Answers

3 votes

Answer:

D

Explanation:

Edge2021

User JMorgan
by
5.6k points
2 votes

Answer:


sin(x)=(1)/(2)

Explanation:

we are given


(1+cos(x))/(sin(x))+(sin(x))/(1+cos(x)) =4

We will make common denominator


((1+cos(x))* (1+cos(x)))/((sin(x))* (1+cos(x)))+(sin(x)* sin(x))/((1+cos(x))* sin(x)) =4

now, we can simplify it


(1+cos^2(x)+2cos(x)+sin^2(x))/((sin(x))* (1+cos(x)))=4


(2+2cos(x))/((sin(x))* (1+cos(x)))=4


(2(1+cos(x)))/((sin(x))* (1+cos(x)))=4

now, we can cancel it


(2)/(sin(x))=4


(2)/(4)=sin(x)

we can simplify it

and we get


sin(x)=(1)/(2)


User Geh
by
5.3k points