Answer:
![\boxed{sin^2x+cos^2x=1}](https://img.qammunity.org/2020/formulas/mathematics/high-school/syfe3we3b1itxfyr1ktbd0ruuoxppoxsav.png)
Explanation:
We want to verify that;
![\sin(x) \cos(x) \tan(x)=1-\cos^2(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/deekaisxzbunrpeqh39r6wjk2llhgkir4u.png)
We take only the expression on the left hand side and work to get the expression on the right hand side.
![\sin(x) \cos(x) \tan(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/j7xmfgt7naha1z0jb1x9g8tj43eviihdu6.png)
![=\sin(x) \cos(x) (\sin(x))/(\cos(x))](https://img.qammunity.org/2020/formulas/mathematics/high-school/pecuoa8a5is0a0rtk5flr6mjksrmfyv9qx.png)
We cancel the common factors to get;
![=\sin(x) * \sin(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lghg4cuxc6k93b72bwt1gswzd8l4fgokcm.png)
![=\sin^2(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nim5wxnp3yy1jpy9cmikkyuumrn9uwovz7.png)
We now use the Pythagorean identity;
![sin^2x+cos^2x=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/9lygu59cxufae665ma0uubtdk80rvsvbeh.png)
We make
the subject to obtain;
![sin^2x=1-cos^2x](https://img.qammunity.org/2020/formulas/mathematics/high-school/ka826yc9esrgdzk9tfe67psfk1dpzlfxt0.png)
as required.
The basic trigonometric identity we used is
![sin^2x+cos^2x=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/9lygu59cxufae665ma0uubtdk80rvsvbeh.png)