41.4k views
4 votes
Find the value of tan theta if sin theta = 12/13 and theta is in quadrant 2

User Raphaelrk
by
8.4k points

1 Answer

3 votes

Answer:

tanΘ = -
(12)/(5)

Explanation:

Using the trigonometric identities

• sin²x + cos²x = 1, hence

cosx = ± √(1 - sin²x )

• tanx =
(sinx)/(cosx)

given sinΘ =
(12)/(13), then

cosΘ = ±
√(1-(12/13)^2)

Since Θ is in the second quadrant where cosΘ < 0, then

cosΘ = -
\sqrt{1-(144)/(169) }

= -
\sqrt{(25)/(169) } = -
(5)/(13)

tanΘ =
((12)/(13) )/((-5)/(13) )

=
(12)/(13) × -
(13)/(5) = -
(12)/(5)



User Safi Nettah
by
7.5k points