Answer: The relative frequencies to the nearest hundredth of the columns of the two-way table is given by :-
A B
Group 1 0.85 0.71
Group 2 0.15 0.29
Explanation:
Given two-way table : A B
Group 1 10 34
Group 2 18 14
Total data value in column A =
![102+18=120](https://img.qammunity.org/2020/formulas/mathematics/college/qjk61ddeifmv5wwyvnn18pypuqw7dz3wcj.png)
Total data value in column B =
![34+14=48](https://img.qammunity.org/2020/formulas/mathematics/college/jwwu48xab10ulmkfkmuyy2tujmf0c70wzr.png)
Now, the relative frequency for Group 1 with column A =
![(102)/(120)=0.85](https://img.qammunity.org/2020/formulas/mathematics/college/qxg8el50h772mwr3gaxvp12mbruogn537b.png)
The relative frequency for Group 1 with column B =
![(34)/(48)=0.708333333..\approx0.71](https://img.qammunity.org/2020/formulas/mathematics/college/uvwqha70iwfkdalpk5onj81xjc07gv4qt1.png)
Now, the relative frequency for Group 2 with column A =
![(18)/(120)=0.15](https://img.qammunity.org/2020/formulas/mathematics/college/cqrzg13uw5tuz5nzy1zi9nuyl1vrkywunh.png)
The relative frequency for Group 2 with column B =
![(14)/(48)=0.2916666666..\approx0.29](https://img.qammunity.org/2020/formulas/mathematics/college/zb5vtbbivxil27n37wdeu7p3i2vorwnk8e.png)