Answer: a)
![(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ybjkeso7qr5r7js5h0mv9de35dih0sxfpl.png)
b) 1
c) 2
Explanation:
(a) sin 17π/6
It is known that the value of sin x repeat after an interval of
![2\pi\ or\ 360^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nu4bsb50d3k1pqi6xtscjet63qli2qlmir.png)
∴
![\sin(17\pi)/(6)=\sin2(5\pi)/(6)=\sin(2\pi+(5)/(6)\pi)=\sin{(5)/(6)\pi}=\sin(\pi-(\pi)/(6))=\sin((\pi)/(6))=(1)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l9u3ffgziasgm0wu2y1rxo9la8ay74r4wy.png)
[Since the value of sin x is positive in 2nd quadrant]
(b) tan 13π/4
It is known that the value of sin x repeat after an interval of
![\pi\ or\ 180^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/c14fa1gqcrbru5sj7a1hh5j07l6pzph1mj.png)
∴
![\tan(13\pi)/(4)=\tan(3\pi+(\pi)/(4))=\tan{(\pi)/(4)}=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/c1svf0f35eymftsxxr5zxg3dkgi04qhj8b.png)
(c) sec 11π/3
![\text{Since, }\sec(x)=(1)/(\cos x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8n329w2w09h594h7s6oub3uaj8i49kmz5p.png)
![\cos((11\pi)/(3))=cos((5\pi)/(3)+2\pi)=\cos((5\pi)/(3))=\cos(6\pi-(\pi)/(3))=\cos((\pi)/(3))=(1)/(2)\\\Rightarrow\sec((11\pi)/(3))=(1)/(\cos((11\pi)/(3)))=2](https://img.qammunity.org/2020/formulas/mathematics/high-school/oguvexhjjlawascxnkdls4vxprqpg48q81.png)