Answer:
The correct answer option is a. –7.12, 1.12.
Explanation:
We are given the following equation and we are to solve it using the quadratic formula:
![x^2 - 8 = -6x](https://img.qammunity.org/2020/formulas/mathematics/high-school/ssartfw2mraoxfhrickoojenylp37xr2x2.png)
Re-arranging this equation in order of decreasing power:
![x^(2) + 6x - 8 = 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/cddftkicvv79qd185cxver70iq62rnx4c2.png)
Using the quadratic formula:
![x = \frac {-b + - √(b^2 - 4ac) }{2a}](https://img.qammunity.org/2020/formulas/mathematics/high-school/r7h7xoex8rlcdlkira7z28fa31waxplm20.png)
Substituting the given values in the formula to get:
![x=(-6+-√((6)^2-4(1)(-8)) )/(2(1))](https://img.qammunity.org/2020/formulas/mathematics/high-school/a2gyiglbltp6k7ylab4vzznydvjz7rkj44.png)
![x=(-6+-√(68) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xzbl9jpy1kv595owd8f4gt7bv4us4o1peo.png)
![x=(-6+√(68) )/(2) , x= (-6-√(68) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rvnll8vseudrhzgbky255uge7xyqxoz9wu.png)
![x=1.12, x=-7.12](https://img.qammunity.org/2020/formulas/mathematics/high-school/dkj0hh068zry56yjthcet1g3khedfs7bb7.png)