153k views
11 votes
Solve this please.

• Log 2 + log(3/2) + log (4/3) + log (5/4)+ log(6/5) + log (7/6) + log (8/7)​

1 Answer

2 votes

Answer:


3 \log 2

Explanation:

Given expression:


\log 2 + \log \left((3)/(2)\right)+\log \left((4)/(3)\right)+\log \left((5)/(4)\right)+\log \left((6)/(5)\right)+\log \left((7)/(6)\right)+\log \left((8)/(7)\right)


\textsf{Apply the \underline{Log Product Law}}: \quad \log_ax + \log_ay=\log_axy


\implies \log \left(2 \cdot (3)/(2) \cdot (4)/(3) \cdot (5)/(4) \cdot (6)/(5) \cdot (7)/(6) \cdot (8)/(7)\right)

Cross out common factors:


\implies \log \left(\diagup\!\!\!\!2 \cdot (\diagup\!\!\!\!3)/(\diagup\!\!\!\!2) \cdot (\diagup\!\!\!\!4)/(\diagup\!\!\!\!3) \cdot (\diagup\!\!\!\!5)/(\diagup\!\!\!\!4) \cdot (\diagup\!\!\!\!6)/(\diagup\!\!\!\!5) \cdot (\diagup\!\!\!\!7)/(\diagup\!\!\!\!6) \cdot (8)/(\diagup\!\!\!\!7)\right)

Therefore:


\implies \log 8

Factor the number: 8 = 2³


\implies \log 2^3


\textsf{Apply the \underline{Log Power Law}}: \quad \log_ax^n=n\log_ax


\implies 3 \log 2

User SirSaleh
by
6.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories