170k views
0 votes
Given the slope of -4 that you just found. What is the slope-intercept equation of a line passing through (4, 9) and (6, 1) in the standard (x, y) coordinate plane? Use the point (4, 9) to find your equation. The line equation in slope-intercept form is Given the slope of -4 that you just found . What is the slope - intercept equation of a line passing through ( 4 , 9 ) and ( 6 , 1 ) in the standard ( x , y ) coordinate plane ? Use the point ( 4 , 9 ) to find your equation . The line equation in slope - intercept form is​

User Aman Aalam
by
3.4k points

1 Answer

12 votes

Answer:

y = -4x + 25

Explanation:

You are given the slope, but you can find the slope using 2 points. Slope is the change in y over the change is x. Your two y's are 1 and 9. Your two x's are 6 and 4.

1-9/6-2

1 - 9 = -8

6-4 = 2

-8/2 is -4.

We want an equation in the form y = mx +b. We have the m (slope), we now just need the b. We take either of the ordinal points (4,9) or (6, 1) to find b. They will both work, but the question tells us to us (4,9). 4 is the x and 9 is the y.

y = mx + b

9 = (-4)(4) + b a negative times a positive is a negative.

9 = -16 + b Add 16 to both sides

25 = b

We know now m which is -4 and b which is 25. We plug them into the model y = mx + b

y = -4x + 25

User Deepak Raj
by
3.6k points