45.0k views
4 votes
Add, subtract, multiply, or divide as indicated. List any restrictions for the variable(s) and simplify the answers when possible.

1) x-2 / x+5 + 3x / 2x-1

2) x+6 / x-6 - x^2 / x+6

3) x+9 / x-4 + x+2 / x^2-11x+28

4) x / x^2-64 + 11 / 2x^2+11x-40

5) 5 / x + 11 / x-3 - x-4 / x^2+2x-15

Add, subtract, multiply, or divide as indicated. List any restrictions for the variable-example-1
User Amirfl
by
5.6k points

1 Answer

6 votes
QUESTION 6

We want to simplify;


(x - 2)/(x + 5) + (3x)/(2x - 1)

We collect LCM to get,




= ((x - 2)(2x - 1) + 3x(x + 5))/((x + 5)(2x - 1))




Expand the numerator to get;


= \frac{2 {x}^(2) - x - 4x + 2+ 3 {x}^(2) + 15x}{(x + 5)(2x - 1)}



= \frac{2 {x}^(2) +3 {x}^(2)- x - 4x +15x + 2 }{(x + 5)(2x - 1)}



= \frac{5{x}^(2) + 10x + 2 }{(x + 5)(2x - 1)}


QUESTION 7


The given expression is

(x + 6)/(x - 6) - \frac{ {x}^(2) }{x + 6}



= \frac{(x + 6)(x - 6) - {x}^(2)(x - 6) }{(x - 6)(x + 6)}


Expand the bracket to obtain,


= \frac{{x}^(2) - 36 - {x}^(3) + 6 {x}^(2) }{(x - 6)(x + 6)}

This simplifies to


= \frac{ - {x}^(3) + 7{x}^(2) - 36 }{(x - 6)(x + 6)}


QUESTION 8


We want to simplify


(x + 9)/(x - 4) + \frac{x + 2}{ {x}^(2) - 11x + 28 }

Let us factor the denominator of the fraction first.




= (x + 9)/(x - 4) + \frac{x + 2}{ {x}^(2) - 7x - 4x+ 28 }





= (x + 9)/(x - 4) + (x + 2)/( x(x - 7) - 4(x - 7))




= (x + 9)/(x - 4) + (x + 2)/( (x - 7)(x- 4))



We collect LCM to obtain;



= ((x + 9)(x - 7) + (x + 2))/( (x - 7)(x- 4)) .


We expand brackets to get;


= \frac{ {x}^(2) - 7x + 9x - 63+ x + 2}{ (x - 7)(x- 4)} .


= \frac{ {x}^(2) + 3x - 61}{ (x - 7)(x- 4)} .



QUESTION 9

The given expression is


\frac{x}{ {x}^(2) - 64} + \frac{11}{2 {x}^(2) + 11x - 40}




We factor the numerator of the second fraction to get,



\frac{x}{ {x}^(2) - {8}^(2) } + \frac{11}{2 {x}^(2) + 16x - 5x- 40}




= \frac{x}{ {x}^(2) - {8}^(2) } + (11)/(2 x(x + 8) - 5(x + 8))


This implies that,


= (x)/( (x - 8)( x + 8)) + (11)/((2 x - 5)(x + 8)) .


We collect LCM to get,


= (x(2x - 5) + 11(x - 8))/((2 x - 5)(x + 8)(x - 8))



= \frac{2 {x}^(2) - 5x + 11x - 88}{(2 x - 5)(x + 8)(x - 8)}



= \frac{2 {x}^(2) + 6x - 88}{(2 x - 5)(x + 8)(x - 8)}

QUESTION 10

The given expression is


(5)/(x) + (11)/(x - 3) - \frac{x - 4}{ {x}^(2) + 2x - 15}


We factor the denominator to obtain:




(5)/(x) + (11)/(x - 3) - (x - 4)/( (x - 3)(x + 5))


We collect LCM to get;


(5(x - 3)(x + 5) + 11x(x + 5) - x(x - 4))/( x(x - 3)(x + 5))

We expand brackets to get,



\frac{5 {x}^(2) + 10x - 75 + 11 {x}^(2) + 55x- {x}^(2) + 4x}{ x(x - 3)(x + 5)}



\frac{15 {x}^(2) + 69x - 75 }{ x(x - 3)(x + 5)}

User Siddstuff
by
5.7k points