181k views
1 vote
Use matrices to solve this linear system:

5x1 − 2x2 = −30

2x1 − x2 = −13

x1 =
x2 =

User Dostrelith
by
5.4k points

2 Answers

2 votes

Answer:

-4

5

Explanation:

on edge!!

User Notalentgeek
by
6.3k points
4 votes

Answer:


x_1=-4 and
x_2=5

Explanation:

Consider given system ,


5x_1-2x_2=-30\\\\\\2x_1-x_2=-13

We have to solve for
x_1 and
x_2

In matrix form,


\left[\begin{array}{cc}5&-2\\2&-1\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right] =\left[\begin{array}{c}-30\\-13\end{array}\right]

then this is in form of AX = b,

A=
\left[\begin{array}{cc}5&-2\\2&-1\end{array}\right]

X=
\left[\begin{array}{c}x_1\\x_2\end{array}\right]

b=
\left[\begin{array}{c}-30\\-13\end{array}\right]

Pre-multiply by
A^(-1) both side, we get,


X=A^(-1)B ..............(1)

First finding inverse of A ,


\mathrm{Find\:2x2\:matrix\:inverse\:according\:to\:the\:formula}:\quad \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}^(-1)=\frac{1}{\det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}}\begin{pmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{pmatrix}


=\frac{1}{\det \begin{pmatrix}5&-2\\ 2&-1\end{pmatrix}}\begin{pmatrix}-1&-\left(-2\right)\\ -2&5\end{pmatrix}


\det \begin{pmatrix}5&-2\\ 2&-1\end{pmatrix}=-1

Thus, inverse of A is ,


(1)/(-1)\begin{pmatrix}-1&-\left(-2\right)\\ -2&5\end{pmatrix}=\begin{pmatrix}1&-2\\ 2&-5\end{pmatrix}

Now substitute
A^(-1) in (1) , we get,


\left[\begin{array}{c}x_1\\x_2\end{array}=\left[\begin{array}{cc}1&-2\\2&-5\end{array}\right]\left[\begin{array}{c}-30\\-13\end{array}\right]

Multiply , we get,


=\begin{pmatrix}1\cdot \left(-30\right)+\left(-2\right)\left(-13\right)\\ 2\left(-30\right)+\left(-5\right)\left(-13\right)\end{pmatrix}


\left[\begin{array}{c}x_1\\x_2\end{array}\right]=\left[\begin{array}{c}-4\\5\end{array}\right]

Thus,
x_1=-4 and
x_2=5

User Jordan Morris
by
5.2k points