67.7k views
1 vote
Find the derivative of the function

Find the derivative of the function-example-1

1 Answer

5 votes

Answer:


\displaystyle y' = \frac{9 \bigg[ 6x^\big{(9)/(4)} √(x^3) \sin (x^3) - \sin (√(x)) \bigg] }{2x^\big{(1)/(4)}}

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 2]:
\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Flipping Integral]:
\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Splitting Integral]:
\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle y = \int\limits^(x^3)_(√(x)) {9√(t) \sin (t)} \, dt

Step 2: Differentiate

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle y = 9\int\limits^(x^3)_(√(x)) {√(t) \sin (t)} \, dt
  2. [Integral] Rewrite [Integration Property - Splitting Integral]:
    \displaystyle y = 9 \bigg[ \int\limits^0_(√(x)) {√(t) \sin (t)} \, dt + \int\limits^(x^3)_0 {√(t) \sin (t)} \, dt \bigg]
  3. [1st Integral] Rewrite [Integration Property - Flipping Integral]:
    \displaystyle y = 9 \bigg[ -\int\limits^(√(x))_0 {√(t) \sin (t)} \, dt + \int\limits^(x^3)_0 {√(t) \sin (t)} \, dt \bigg]
  4. Chain Rule [Integration Rule - Fundamental Theorem of Calculus 2]:
    \displaystyle y' = 9 \bigg[ - \bigg( {\sqrt{√(x)} \sin (√(x)) \bigg) \cdot (d)/(dx)[√(x)] + \bigg( √(x^3) \sin (x^3) \bigg) \cdot (d)/(dx)[x^3] \bigg]
  5. Basic Power Rule:
    \displaystyle y' = 9 \bigg[ - \bigg( {\sqrt{√(x)} \sin (√(x)) \bigg) (1)/(2√(x)) + \bigg( √(x^3) \sin (x^3) \bigg) \cdot 3x^2 \bigg]
  6. Simplify:
    \displaystyle y' = 9 \bigg[ \frac{- \bigg( x^\big{(1)/(4)} \sin (√(x)) \bigg)}{2√(x)} + \bigg( √(x^3) \sin (x^3) \bigg) \cdot 3x^2 \bigg]
  7. Rewrite:
    \displaystyle y' = \frac{9 \bigg[ 6x^\big{(9)/(4)} √(x^3) \sin (x^3) - \sin (√(x)) \bigg] }{2x^\big{(1)/(4)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User George Papadakis
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories