Answer:
Exact dimensions:
![width=-1+√(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/msi8n2ng8f6gr6nsx5cm17fhndwlu2uprh.png)
![length=-1+√(7)+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fzcwxdl9db2z45f4r7an5hhr3qr54rhogu.png)
![length=1+√(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cyvcdr0q9vmwgtybi42kom6vxjgdid0m10.png)
Approximate dimensions:
![width=1.64575ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nott3dgooj9y4by780v9nv5ix47d1h1iop.png)
![length=1.64575+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ap1mnge3m3rp78v7oc19xg9vbhbwc2hoa3.png)
![length=3.64575ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9plfl12l5b31gvv2kastu9ea9hatxzbzwi.png)
Explanation:
Let's assume width of rectangle is w ft
The length of a rectangular flower bed is 2ft longer than the width
so,
length =w+2
![L=w+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uwschvn7w9mwasp4yau8gda0kiyyzv2suc.png)
now, we can find area
![A=L* W](https://img.qammunity.org/2020/formulas/mathematics/high-school/ejgkkc14n7tkdr0kyi2shsxf45a2tozcla.png)
now, we can plug it
![A=(w+2)* w](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7fqdy70ifhu4cu5qjs5e70sc59qdvr9teu.png)
![A=w^2+2w](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l6092c7d009x7who82islj8k8xwdtcc9d6.png)
we are given area =6
so, we can set it equal
and then we can solve for w
![w^2+2w=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qa129777q47zat2a142x7jyfm0l6xets94.png)
![w^2+2w-6=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s0remp8rtlx8chy23y2isfllbcm19py2bq.png)
we can use quadratic formula
![ax^2+bx+c=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/pfx3qmuu3wy6dr87fm204dpq1jdcjpuwdz.png)
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ab45cdhbeliwcal3naam0rctuj1s2ka8cv.png)
now, we can compare and find a,b and c
a=1 , b=2 , c=-6
![w=(-2\pm √(2^2-4\cdot \:1\left(-6\right)))/(2\cdot \:1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/26e0g2zefg3b3dl74485kohtienjxxmw42.png)
![w=-1+√(7),\:w=-1-√(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/za328epyqg379s0rabtnavrrm3wjwwi9zm.png)
we know that dimension can never be negative
so, we will only consider positive value
Exact dimensions:
![width=-1+√(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/msi8n2ng8f6gr6nsx5cm17fhndwlu2uprh.png)
![length=-1+√(7)+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fzcwxdl9db2z45f4r7an5hhr3qr54rhogu.png)
![length=1+√(7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cyvcdr0q9vmwgtybi42kom6vxjgdid0m10.png)
Approximate dimensions:
![width=1.64575ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nott3dgooj9y4by780v9nv5ix47d1h1iop.png)
![length=1.64575+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ap1mnge3m3rp78v7oc19xg9vbhbwc2hoa3.png)
![length=3.64575ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9plfl12l5b31gvv2kastu9ea9hatxzbzwi.png)