47.5k views
3 votes
Solve the inequality.

|3x + 6| < 12


A) –6 < x < 2


B) –21 < x < 3


C) –6 > x > 2


D) –2 < x < 2

User Hunsu
by
8.0k points

2 Answers

3 votes
I think the answer might be A
User Kimbley
by
8.5k points
5 votes

Answer: Be Te Dubs meaning BTW Go To TigerAlgebra.com for questions like yours its really great


Explanation:

|3x+6|<12

One solution was found :

-6 < x < 2

Absolute Value Inequality entered :

|3x+6|<12


Step by step solution :

Step 1 :

Rearrange this Absolute Value Inequality

Absolute value inequalitiy entered

|3x+6| < 12


Step 2 :

Clear the Absolute Value Bars

Clear the absolute-value bars by splitting the equation into its two cases, one for the Positive case and the other for the Negative case.


The Absolute Value term is |3x+6|


For the Negative case we'll use -(3x+6)


For the Positive case we'll use (3x+6)



Step 3 :

Solve the Negative Case

-(3x+6) < 12


Multiply

-3x-6 < 12


Rearrange and Add up

-3x < 18


Divide both sides by 3

-x < 6


Multiply both sides by (-1)

Remember to flip the inequality sign

x > -6

Which is the solution for the Negative Case


Step 4 :

Solve the Positive Case

(3x+6) < 12


Rearrange and Add up

3x < 6


Divide both sides by 3

x < 2


Which is the solution for the Positive Case


Step 5 :

Wrap up the solution

-6 < x < 2


Solution in Interval Notation

(-6,2)


Solution on the Number Line

One solution was found :

-6 < x < 2

User Adam Mlodzinski
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories