Answer:
3.8 seconds
Explanation:
Given equation
![h= -16t^2 + 60t + 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/v8qvwykm30cvlr3i7uid2pp0rhyyfwyhrb.png)
When the ball hits the ground then height is 0
So we replace h with 0 and solve for t
![0= -16t^2 + 60t + 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/2ty4musfp9gbzea1h67qxzcq7tscrfswhg.png)
a= -16 , b= 60 and c= 5
Apply quadratic formula to solve for t
![t=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v1zae78zsap4mtkvhk49hc3z1xcdx3ai0l.png)
=
![(-60+√(60^2-4\left(-16\right)\cdot \:5))/(2\left(-16\right))[/tex</p><p>[tex]=(-60+-√(3920))/(-32)](https://img.qammunity.org/2020/formulas/mathematics/high-school/s9buk1qtigfrbe5fydlwb7oudw60qgbtzj.png)
![=(-60+-28√(5))/(-32)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ipwerlvd2q6d4l18nv3eoupomeylau5iiv.png)
![=(4(-15+-7√(5)))/(-32)](https://img.qammunity.org/2020/formulas/mathematics/high-school/tknzkqs4g77kh3akuy7eddgo3v4yj1hff6.png)
![=((-15+-7√(5)))/(-8)](https://img.qammunity.org/2020/formulas/mathematics/high-school/j1gg7ily4y9uo8qcqlnnxr86lk7f5063wb.png)
Now make two fractions and solve for x
t=
=-0.0815
t=
=3.83
So answer is 3.8 seconds