123k views
1 vote
The length of a rectangular flower bed is 2ft longer than the width. If the area is 6ft, then what are the exact length and width?

1 Answer

6 votes

Answer:


w=-1+√(7)\ ft


L=1+√(7)\ ft

Explanation:

we know that

The area of a rectangle is equal to


A=LW

In this problem we have


A=6\ ft^(2)

so


6=LW ------> equation A


L=W+2 -----> equation B

substitute equation B in equation A


6=(W+2)W


6=W^(2) +2W\\ \\W^(2) +2W-6=0

The formula to solve a quadratic equation of the form
ax^(2) +bx+c=0 is equal to


x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}

in this problem we have


W^(2) +2W-6=0

so


a=1\\b=2\\c=-6

substitute in the formula


w=\frac{-2(+/-)\sqrt{2^(2)-4(1)(-6)}} {2(1)}


w=(-2(+/-)√(28))/(2)


w=(-2(+/-)2√(7))/(2)


w=(-2(+)2√(7))/(2)=-1+√(7) ------> the value positive is the solution


w=(-2(-)2√(7))/(2)=-1-√(7)

therefore


w=-1+√(7)\ ft

Find the value of L


L=W+2 ------>
L=-1+√(7)+2=1+√(7)\ ft

User Suhayb
by
5.5k points