Answer:
![a\in (-\infty,1]\cup [3,\infty).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ksypgj5grg07mcl7vdqes0qi89eoyn137n.png)
Explanation:
Consider the function
This function represents the parabola with branches that go in positive y-direction (because the leading coefficient is 1>0).
The disriminant of this quadratic function is
![D=(a-2)^2-4\cdot 1\cdot 0.25=a^2-4a+4-1=a^2-4a+3.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/437bx8lkqz5fxnfals33agetb9tq7i34gq.png)
When the discriminant is ≥0, the quadratic function will take nonnegative values, thus,
![a^2-4a+3\ge 0,\\ \\D=(-4)^2-4\cdot 1\cdot 3=16-12=4,\\ \\a_(1,2)=(-(-4)\pm √(4))/(2\cdot 1)=(4\pm 2)/(2)=1,\ 3,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pra195cmwou6smykt9u2jyxje7bvbciwuy.png)
then
![(a-1)(a-3)\ge 0,\\ \\a\in (-\infty,1]\cup [3,\infty).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lnpisrt9rtihnyf4zohv0xi84nua2arq5a.png)