Answer:
Option C is correct, i.e. The common difference is 10, so the function is f(n + 1) = f(n) + 10 where f(1) = 14.
Explanation:
Given the sequence is 14, 24, 34, 44, 54, ...
It is an arithmetic sequence which means the difference of consecutive terms would be same.
First term = 14.
common difference = second term - first term = 24 - 14 = 10.
So we have common difference = 10, f(n+1) = f(n) + 10, f(1) = 14.
Hence, option C is correct, i.e. The common difference is 10, so the function is f(n + 1) = f(n) + 10 where f(1) = 14.