a. By the FTC,
![\displaystyle(\mathrm d)/(\mathrm dx)\int_1^(\cos x)(t+\sqrt t)\,\mathrm dt=(\cos x+√(\cos x))(\mathrm d)/(\mathrm dx)\cos x=-\sin x(\cos x+√(\cos x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a173pd8vfdneprp7hcovnjqfugr0k8mzt8.png)
b. We can either evaluate the integral directly, or take the integral of the previous result. With the first method, we get
![\displaystyle\int_1^(\cos x)(t+\sqrt t)\,\mathrm dt=\frac{t^2}2+\frac{2t^(3/2)}3\bigg|_(t=1)^(t=\cos x)=\left(\frac{\cos^2x}2+\frac{2(\cos x)^(3/2)}3\right)-\left(\frac12+\frac23\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/41xp4ad80fvz0jj5u07qipiecmrrorxxz9.png)
![=\frac{\cos^2x}2+\frac{2√(\cos^3x)}3-\frac76](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m84f7ajvmmsxt3e9gqrczqi3k808ynlrb2.png)
c. The derivative of the previous result is
![\frac{2\cos x(-\sin x)}2+\frac{2\cdot\frac32(\cos x)^(1/2)(-\sin x)}3=-\sin x\cos x-\sin x√(\cos x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/68oh5uuvjigrocn6t8m781bxp4bkb60pnt.png)
which is the same as the answer given in part (a), so ...
d. ... yes