Answer:
Cancelling x and (2x-3), we get, the simplest form as
![(4x^3-10x^2+6x)/(2x^3+x^2-3x)=(2(x-1))/((x+1))](https://img.qammunity.org/2020/formulas/mathematics/college/62e52uhs8glorzxean6c8e376izrxtouux.png)
Explanation:
Consider the given two expressions
and
.
We solve both expressions seperately,
Consider the first expression
Taking x common from the expression,
The terms in brackets is a quadratic equation, we can solve using middle term splitting method,
![4x^2-10x+6](https://img.qammunity.org/2020/formulas/mathematics/college/3n5kc36m0bljcjll7888w2w5g4h1ds3mwj.png)
-10x can be written as -4x-6x , we get,
![4x^3-10x+6)=2x(2x-3)(x-1)](https://img.qammunity.org/2020/formulas/mathematics/college/i8adc05a8qjgu95qdgk4x2uf375ksyxnm5.png)
Consider the second term ,
![2x^3+x^2-3x](https://img.qammunity.org/2020/formulas/mathematics/college/53p0qrtprdgnx0vvnxqaa2k2516mu663sx.png)
Taking x common from the expression we have,
![2x^3+x^2-3x=x(2x^2+x-3)](https://img.qammunity.org/2020/formulas/mathematics/college/nekpvou66cmozrk6e0rpfe041ktp9kyfne.png)
The terms in brackets is a quadratic equation, we can solve using middle term splitting method,
![2x^2+x-3](https://img.qammunity.org/2020/formulas/mathematics/college/quoq4ivzk0spr4evon6mk1ucloct9ocwyh.png)
x can be written as 3x-2x
![2x^2+x-3=2x^2+2x-3x-3](https://img.qammunity.org/2020/formulas/mathematics/college/zpwcbonjq8r70z4smshu9kbx3aq9xjl0cs.png)
![2x^2+2x-3x-3=2x(x+1)-3(x+1)=(2x-3)(x+1)](https://img.qammunity.org/2020/formulas/mathematics/college/vl5emiu3mzxo2emvr1fez4oazv1hr0oisp.png)
Thus,
![2x^3+x^2-3x=x(2x-3)(x+1)](https://img.qammunity.org/2020/formulas/mathematics/college/3vbdfrb9kb36rujxsdpmxi422sz9rrkhlz.png)
Our expression is
over
![2x^3+x^2-3x](https://img.qammunity.org/2020/formulas/mathematics/college/53p0qrtprdgnx0vvnxqaa2k2516mu663sx.png)
is
![(4x^3-10x^2+6x)/(2x^3+x^2-3x)](https://img.qammunity.org/2020/formulas/mathematics/college/910q3gpgpy74lzp87bgzglkk5vs84mq0e6.png)
![(4x^3-10x^2+6x)/(2x^3+x^2-3x)=(2x(2x-3)(x-1))/(x(2x-3)(x+1))](https://img.qammunity.org/2020/formulas/mathematics/college/r89q4du6p3yts4y62uq00bkynw1wcdwlry.png)
Cancelling same terms from numerator and denominator , thus cancelling x and (2x-3), we get, the simplest form as
![(4x^3-10x^2+6x)/(2x^3+x^2-3x)=(2(x-1))/((x+1))](https://img.qammunity.org/2020/formulas/mathematics/college/62e52uhs8glorzxean6c8e376izrxtouux.png)