Answer:
D. The work shown above is correct and
may not be simplified further.
Explanation:
The expression is given as,
![\sqrt[6]{x^(13)}=\sqrt[6]{x^(6)* x^(7)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/w6esbazxv9cxn3bvt89i0ct5266kdzvas7.png)
i.e.
![\sqrt[6]{x^(13)}=x* \sqrt[6]{x^(7)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yemnvf3hnvkguvryvuv41p28vple8n3dyq.png)
Then,
![\sqrt[6]{x^(13)}=x* \sqrt[6]{x^(7)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yemnvf3hnvkguvryvuv41p28vple8n3dyq.png)
Thus, we can see that above calculation is correct.
The right side of step 2 gives,
![\sqrt[6]{x^(6)* x^(7)}=(x^(6))^(1)/(6)* (x^(7))^(1)/(6)=x* \sqrt[6]{x^(7)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/s0narfueraruzhcew2x8fe92jgr8e1jwak.png)
So, the work shown is correct and
may not be further simplified.
Hence, option D is correct.