Answer:
1.
Perimeter of a rectangle is given by:
![P=2(l+b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/28m4lwbhqwttfy1uds4p4wzscivronu5vc.png)
Given:
Length of a rectangle(l) =
unit and a width(w) of a rectangle =
units.
then;
units.
Therefore, the perimeter of a rectangle is
units.
2.
Simplify:
![4\sqrt[3]{3}(7+6\sqrt[3]{9)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/js20lypqu1zjx9f8z7psney7148hja81t0.png)
Using distributive property:
![a\cdot (b+c) = a\cdot b+ a\cdot c](https://img.qammunity.org/2020/formulas/mathematics/high-school/yb5iui6ryaxn7bq504vqqvksk898sz02vq.png)
then;
![28\sqrt[3]{7} + 36\sqrt[3]{27}](https://img.qammunity.org/2020/formulas/mathematics/high-school/czl6ky4grj1bytd886r9o3o7k17gjfig6j.png)
![28\sqrt[3]{7} + 36 \cdot 3 = 28\sqrt[3]{7} + 108](https://img.qammunity.org/2020/formulas/mathematics/high-school/d4pg06j10nfswnvtt2aqvzf6nplqd6edtu.png)
Therefore, the simplified given expression is,
![28\sqrt[3]{7} + 108](https://img.qammunity.org/2020/formulas/mathematics/high-school/64sj8w7iihnhtnmzzwosq491s4gdwq4crx.png)
3.
Area of a circle(A) is given by:
where r is the radius of the circle.
Given: Area of circle =
square feet
then;
![100 \pi = \pi r^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/pi94kyzv51absljvmidh54c630l4xtatrb.png)
⇒
![100 = r^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/h8vga6kyefsn1r7w9gim1yvsi5du959ml8.png)
Simplify:
ft.
Therefore, the radius of the circle is 10 ft.
4.
Volume of a cube is given by:
where s is the side length of a cube.
Given: Volume of a cube = 1536 cubic inches.
Substitute the given value to find s;
![1536 = s^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/sphkwn0z2ydctqgrlpsi9ahnllw3dulthc.png)
Simplify:
![s=\sqrt[3]{1536} inches](https://img.qammunity.org/2020/formulas/mathematics/high-school/frsg8gz6ml14z03432aj7mmj4ln1k0xri3.png)
Therefore, the length of side of a cube is, 11.54 inches.
5.
Solve:
![\sqrt[4]{2p+2} = 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/c1bkyjfdl7gdlnkwj0icitwfp4hyybhiln.png)
then;
![2p+2 = 3^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/820vqqp8yqaku4pf00ntqb8qb4ke5jijfn.png)
2p+2 = 81
Subtract 2 from both sides we get;
2p = 79
Divide 2 both sides we get;
p = 39.5
Therefore, the value of p is 39.5.