Answer:
![D'(2,1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/swu7youk8fz6zfnvybw3b8xp7pm8qix8op.png)
Explanation:
The given parallelogram has coordinates A(1, 1), B(5, 4), C(7, 1), and D(3, -2).
The rotation of
about the origin has the mapping;
![P(x,y)\rightarrow P'(-x,-y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u2hs0rp2ibwey0l8fe826hzs5witqgoi9h.png)
This implies that;
![A(1,1)\rightarrow (-1,-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ux5e0vq3lx3nxjp28qzke4w71dvzzujhus.png)
![B(5,4)\rightarrow (-5,-4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tqlbvlz54uwt9038ligaskyb732mkvvhdk.png)
![C(7,1)\rightarrow (-7,-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v7bphtj93pv9ycxtzdzx01xntipog85l35.png)
![D(3,-2)\rightarrow (-3,2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lvzeuq084b45bwk6twcd63ie3520tiwjdd.png)
A translation of 5 units to the right and 1 unit down has the mapping;
![P(x,y)\rightarrow P'(x+5,y-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vvaolp35rnf7i8rs5yv6lkdm4ynwtrh37r.png)
We apply this to the resulting coordinates to obtain;
![A(1,1)\rightarrow (-1,-1) \rightarrow (-1+5,-1-1)=A'(4,-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2vevjd62dzz2im2vz7tmxs8r5c4wtla98k.png)
![B(5,4)\rightarrow (-5,-1) \rightarrow (-5+5,-4-1)=B'(0,-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bpz3ljmmuvs34r8w7irgt67eqvi97zqh0k.png)
![C(7,1)\rightarrow (-7,-1)\rightarrow (-7+5,-1-1)=C'(-2,-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eecf4cquhlqv9fzfhojr6iihs3ccgqc5iq.png)
![D(3,-2)\rightarrow (-3,2)\rightarrow (-3+5,2-1)=D'(2,1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o31d4wpbx4ngrzdpw9p6zb1sr76y2boozy.png)