81.2k views
0 votes
A parallelogram has coordinates A(1, 1), B(5, 4), C(7, 1), and D(3, -2). What are the coordinates of parallelogram A′B′C′D′ after a 180° rotation about the origin and a translation 5 units to the right and 1 unit down?

User Rishiag
by
5.3k points

1 Answer

7 votes

Answer:


A'(4,-2)
B'(0,-5)
C'(-2,-2)
D'(2,1)

Explanation:

The given parallelogram has coordinates A(1, 1), B(5, 4), C(7, 1), and D(3, -2).

The rotation of
180\degreeabout the origin has the mapping;


P(x,y)\rightarrow P'(-x,-y)

This implies that;



A(1,1)\rightarrow (-1,-1)



B(5,4)\rightarrow (-5,-4)



C(7,1)\rightarrow (-7,-1)



D(3,-2)\rightarrow (-3,2)


A translation of 5 units to the right and 1 unit down has the mapping;



P(x,y)\rightarrow P'(x+5,y-1)


We apply this to the resulting coordinates to obtain;


A(1,1)\rightarrow (-1,-1) \rightarrow (-1+5,-1-1)=A'(4,-2)



B(5,4)\rightarrow (-5,-1) \rightarrow (-5+5,-4-1)=B'(0,-5)



C(7,1)\rightarrow (-7,-1)\rightarrow (-7+5,-1-1)=C'(-2,-2)



D(3,-2)\rightarrow (-3,2)\rightarrow (-3+5,2-1)=D'(2,1)


User Wayne Vosberg
by
5.8k points