231k views
4 votes
Need help solving these two vector problems.

Need help solving these two vector problems.-example-1
Need help solving these two vector problems.-example-1
Need help solving these two vector problems.-example-2

1 Answer

7 votes

Answer:

see below

Explanation:

Here, we'll use an ordered pair <a, b> to represent each vector's two components. The rules are ...

  • multiplying a vector by a scalar multiplies each component by that scalar
  • multiplying a vector by a scalar multiplies its magnitude by the magnitude of the scalar
  • the magnitude of a vector is the square root of the sum of the squares of its components

1.

For A = <2.5, -3.5>, |A| = √(2.5²+(-3.5)²) = √18.5 ≈ 4.30

  • 2A = <5, -7>; |2A| = 8.60
  • -2A = <-5, 7>; |-2A| = 8.60
  • A/2 = <1.25, -1.75>; |A/2| = 2.15

_____

2.

A = |A|<cos(43.9°), sin(43.9°)>

B = |B|<cos(154.8°), sin(154.8°)>

C = <0, -25.8>

The sum being zero gives rise to 2 equations in 2 unknowns.

|A|cos(43.9°) +|B|cos(154.8°) = 0

|A|sin(43.9°) +|B|sin(154.8°) = 25.8

Using Cramer's rule to find the solution, we get ...

|A| = 25.8cos(154.8°)/(cos(154.8°)sin(43.9°) -sin(154.8°)cos(43.9°))

|A| = 25.8cos(154.8°)/sin(43.9° -154.8°)

|A| ≈ 24.9887

|B| = -25.8cos(43.9°)/sin(-110.9°)

|B| ≈ 19.8995

User Anders Nilsson
by
4.3k points