93.7k views
4 votes
Given that f(x) =


\sqrt[3]{x} \: \: + 5
is one-to- one, find each of the following:
a) Find

{f}^( - 1) (x)
, the equation of the inverse of f(x)

{f}^( - 1) (x)
=

b) Find the coordinates of f (x )and

{f}^( - 1) (x)

c) Find the domain and range of both f(x) and

{f}^( - 1) (x)

User Ferflores
by
5.5k points

1 Answer

2 votes

Answer:


f(x)=\sqrt[3]{x} +5\\\\\implies y = √(3){x}+5

a) Since the function is given to be one - one so the inverse of the function exist. Now f(x) maps x to y so the inverse of f(x) maps y to x

To find inverse, first interchange the roles of x and y :


\implies x = \sqrt[3]{y}+5

Now, solve for y :


x = \sqrt[3]{y}+5\\\\\implies \sqrt[3]{y}=x-5\\\\\text{Now, cubing both the sides. We get,}\\\\\implies y=(x-5)^3\\\\\implies y=x^3-15\cdot x^2+75\cdot x-125\\\\\implies\bf f^(-1)(x)=x^3-15\cdot x^2+75\cdot x-125

b) To find coordinates of f(x) :


f(x)=\sqrt[3]{x} +5

First take y = 0 then take x = 0

⇒ x-coordinates : (-125,0) and y-coordinates : (0,5)

To find coordinates of inverse function of x :


y=x^3-15\cdot x^2+75\cdot x-125

First take y = 0 then take x = 0

⇒ x - coordinates : (5,0) and y - coordinates : (0,-125)

c) f(x) is defined for every real number.

⇒ Domain : -∞ < x < ∞

and Range : -∞ < f(x) < ∞

And inverse function of x is also defined for every real number :

⇒ Domain : -∞ < x < ∞


\text{and Range : }-\infty < f^(-1)(x) < \infty

User Brian Bartoldson
by
5.3k points