159k views
5 votes
Solve the system using the Gauss-Jordan method. 2x – 3y – 9z = 12 4x + 5y – 6z = –14 –5x + 3y – 9z = 21 A. (–3, 7, –5) B. C. No solution D.

1 Answer

1 vote

Answer:


(-3,-2,(-4)/(3))

Explanation:

We are given the equations,

2x - 3y - 9z = 12

4x + 5y - 6z = - 14

-5x + 3y - 9z = 21

Then, the augmented matrix is given by,
\begin{bmatrix}2&-3&-9&12\\4&5&-6&-14\\-5&3&-9&21\end{bmatrix}

Now, we will apply some rules to get the row-echlon form of the matrix.

1.
R_(1)=>\frac {R_(1)}{2}.

This gives,
\begin{bmatrix}1&(-3)/(2)&(-9)/(2)&6\\4&5&-6&-14\\-5&3&-9&21\end{bmatrix}

2.
R_(2)=>R_(2)-4R_(1) and
R_(3)=>R_(3)+5R_(1)

We get,
\begin{bmatrix}1&(-3)/(2)&(-9)/(2)&6\\0&11&12&-38\\0&(-9)/(2)&(-63)/(2)&51\end{bmatrix}

3.
R_(2)=>\frac {R_(2)}{11}

So,
\begin{bmatrix}1&(-3)/(2)&(-9)/(2)&6\\0&1&(12)/(11)&(-38)/(11)\\0&(-9)/(2)&(-63)/(2)&51\end{bmatrix}

4.
R_(3)=>R_(3)+(9)/(2)R_(2) and
R_(1)=>R_(1)+(3)/(2)R_(2)

We get,
\begin{bmatrix}1&0&(-63)/(22)&(9)/(11)\\0&1&(12)/(11)&(-38)/(11)\\0&0&(-585)/(22)&(390)/(11)\end{bmatrix}

5.
R_(3)=>(-22)/(585)* R_(3)

We get,
\begin{bmatrix}1&0&(-63)/(22)&(9)/(11)\\0&1&(12)/(11)&(-38)/(11)\\0&0&1&(-4)/(3)\end{bmatrix}

6.
R_(1)=>R_(1)+(63)/(22)R_(3) and
R_(2)=>R_(2)+(-12)/(11)R_(3)

So,
\begin{bmatrix}1&0&0&-3\\0&1&0&-2\\0&0&1&(-4)/(3)\end{bmatrix}

Thus, we get,

x = -3, y = -2 and z =
(-4)/(3).

Hence, the solution is
(-3,-2,(-4)/(3)).

User Reeebuuk
by
7.9k points