Answer:
The perimeter is 13.213 units.
The area is 7 square units
Explanation:
O=(0,0)=(xo,yo)→xo=0, yo=0
A=(5,2)=(xa,ya)→xa=5, ya=2
B=(3,4)=(xb,yb)→xb=3, yb=4
Perimeter: P=OA+AB+OB
![OA=\sqrt{(xa-xo)^(2)+(ya-yo)^(2)}\\ OA=\sqrt{(5-0)^(2)+(2-0)^(2)}\\ OA=\sqrt{(5)^(2)+(2)^(2)}\\ OA=√(25+4)\\ OA=√(29)](https://img.qammunity.org/2020/formulas/mathematics/high-school/opzlgesgkghcjl60erjwz98papnava8bur.png)
![AB=\sqrt{(xb-xa)^(2)+(yb-ya)^(2)}\\ AB=\sqrt{(3-5)^(2)+(4-2)^(2)}\\ AB=\sqrt{(-2)^(2)+(2)^(2)}\\ AB=√(4+4)\\ AB=√(8)\\ AB=√(4*2)\\ AB=√(4)√(2)\\ AB=2√(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gq85bk9iwix0fnl25ef22n66n7lv47ndnk.png)
![OB=\sqrt{(xb-xo)^(2)+(yb-yo)^(2)}\\ OB=\sqrt{(3-0)^(2)+(4-0)^(2)}\\ OB=\sqrt{(3)^(2)+(4)^(2)}\\ OB=√(9+16)\\ OB=√(25)\\ OB=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/hk14qu4ki7nqkz3u71ic6z7sg2qt7z2jol.png)
P=OA+AB+OB
P=√29+2√2+5
P=5.385+2(1.414)+5
P=5.385+2.828+5
P=13.213
Area: A
![A=(x_(o) y_(a)+x_(a) y_(b)+x_(b) y_(o)-(y_(o) x_(a)+y_(a) x_(b)+y_(b) x_(o)) )/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ftganiwcz8v0zazm9my1rl852ozywtbqq6.png)
![A=((0)(2)+(5)(4)+(3)(0)-[(0)(5)+(2)(3)+(4)(0)] )/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/o6grcvkqfgblo1awzj6c5my9xnai59i1m7.png)
![A=(0+20+0-(0+6+0))/(2)\\ A=(20-(6))/(2)\\ A=(20-6)/(2)\\ A=(14)/(2)\\ A=7](https://img.qammunity.org/2020/formulas/mathematics/high-school/pzq6k5l59j02c6maf979f3bczhu3wzclu0.png)