Each of these ODEs is linear and homogeneous with constant coefficients, so we only need to find the roots to their respective characteristic equations.
(a) The characteristic equation for
![y'' - 2y' - 8y = 0](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/kevbtsrr0edcx5nyw6a4jh1owy2ie78gpc.png)
is
![r^2 - 2r - 8 = (r - 4) (r + 2) = 0](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/ojobgnpxsivwdxl08u3uql8fb22n7s3fvw.png)
which arises from the ansatz
.
The characteristic roots are
and
. Then the general solution is
![\boxed{y = C_1 e^(4x) + C_2 e^(-2x)}](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/50n314k55lufwqi8wr8daun1tlg1bxtrb9.png)
where
are arbitrary constants.
(b) The characteristic equation here is
![25r^2 - 20r + 4 = (5r - 2)^2 = 0](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/48i7poia38oss7803tzwdo0swau08l1kjl.png)
with a root at
of multiplicity 2. Then the general solution is
![\boxed{y = C_1 e^(2/5\,x) + C_2 x e^(2/5\,x)}](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/pxx9lkfljg2pzhlggzz561q5hfg64nkobc.png)
(c) The characteristic equation is
![r^2 + 2r + 2 = (r + 1)^2 + 1 = 0](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/ieawrcm5ndwdlcbikfr3c7wimaig543kjj.png)
with roots at
, where
. Then the general solution is
![y = C_1 e^((-1+i)x) + C_2 e^((-1-i)x)](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/bpi0iw115vd971h3cwx0dbtx92ihcin3dn.png)
Recall Euler's identity,
![e^(ix) = \cos(x) + i \sin(x)](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/mjr8ly8ush4eek8bpci8uifkdnay6cwccj.png)
Then we can rewrite the solution as
![y = C_1 e^(-x) (\cos(x) + i \sin(x)) + C_2 e^(-x) (\cos(x) - i \sin(x))](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/yo2cbfuzto79ltal3maui4hbjuxbk90x44.png)
or even more simply as
![\boxed{y = C_1 e^(-x) \cos(x) + C_2 e^(-x) \sin(x)}](https://img.qammunity.org/2023/formulas/advanced-placement-ap/college/lankrf0clz39b2s6evdqtak8had5io6bxz.png)