Answer:
Explanation:
Let the width of the rectangular storage room be=x feet. Then, the length of the rectangular storage room is= (x+5) feet.
The area of the room =104 square feet
⇒
![Length{*}breadth=104](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m0tyz5wsdhai3kxa8ruur5tf3oxgq437xw.png)
⇒
![x(x+5)=104](https://img.qammunity.org/2020/formulas/mathematics/middle-school/makkiyuxr17p05ca64g355irorojqqh8rm.png)
⇒
![x^(2)+5x-104=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7ewstmkc5r1zxbkw2bj0kqurxacaj0uwt2.png)
⇒
![x^(2)+13x-8x-104=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kebnrh1g2roggms61uj2xoqp1buocgm8l7.png)
⇒
![x(x+13)-8(x+13)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e9pcsa81vuy50aa3s6ql7x12onn41ypl7o.png)
⇒
![(x-8)(x+13)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8r5kn2a07naplbmnjm3zqasz34pq0gpbhk.png)
⇒x=8 and x=-13
Neglecting the negative value, we have the width of the rectangular storage room=x=8 feet.
Therefore, the length of the rectangular storage room=x+5=8+5=13 feet.
So, the dimensions of the room are 8 feet and 13 feet.