56.9k views
0 votes
Find the area of a square if its sides measure 2 2/3 m.

2 Answers

6 votes

Final answer:

The area of the square with sides measuring 2 2/3 m is 64/9 m².

Step-by-step explanation:

To find the area of a square, you need to use the formula: Area = side length * side length. In this case, the side length of the square is 2 2/3 m. To calculate the area, convert the mixed fraction to an improper fraction: 2 2/3 = (2 * 3 + 2) / 3 = 8/3.

Now, substitute the side length into the formula: Area = (8/3) * (8/3) = 64/9 m². Simplify the fraction to its lowest terms if needed.

Therefore, the area of the square with sides measuring 2 2/3 m is 64/9 m².

User Rubina
by
7.3k points
4 votes

Answer:

A = 7 1/9 m^2

Step-by-step explanation:

The area of a square is the side length squared.

A = s^2

A = (2 2/3) ^2

Change the mixed number to an improper fraction

2 2/3 = (3*2+2) /3 = 8/3

A = (8/3) ^2

= 64/9

Change this back to a mixed number

9 goes into 64 seven times (9*7 = 63 with 1 left over)

7 1/9 m^2

The area is 7 1/9

User Paul Salber
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories