Answer:
m∠R = 112°
m∠S = 112°
m∠T = 68°
Explanation:
Quadrilateral QRST is a cyclic quadrilateral.
A cyclic quadrilateral is a quadrilateral drawn inside a circle where every vertex touches the circumference of the circle.
The opposite angles in a cyclic quadrilateral sum to 180°.
⇒ m∠Q + m∠S = 180°
⇒ m∠R + m∠T = 180°
Given:
- m∠Q = 68°
- m∠R = (3x + 40)°
- m∠T = (5x - 52)°
Measure of angle Q
⇒ m∠Q + m∠S = 180°
⇒ 68° + m∠S = 180°
⇒ m∠S = 180° - 68°
⇒ m∠S = 112°
Measure of angles R and T
⇒ m∠R + m∠T = 180°
⇒ (3x + 40)° + (5x - 52)° = 180°
⇒ )8x -12)° = 180°
⇒ 8x° = 192°
⇒ x = 24
Substituting the found value of x into the expressions for angles R and T:
⇒ m∠R = (3(24) + 40)°
⇒ m∠R = 112°
⇒ m∠T = (5x - 52)°
⇒ m∠T = 68°