Answer:
The measure of HC is 1 unit.
Explanation:
Given,
In triangle ABC,
∠ABC = 90°, BC = 2,
Also, H∈ AC such that ∠BHC = 90°,
And, AH = HC + 2
We have to find : HC
∵ ∠ABC = ∠BHC ( right angles )
∠ACB = ∠HCB
By the AA similarity postulate,
![\triangle ABC\sim \triangle BHC](https://img.qammunity.org/2020/formulas/mathematics/college/bzfzij9ag0ro8q8zuz82qafwky9txuet08.png)
∵ The corresponding sides of similar triangles are in same proportion,
![\implies (BC)/(HC)=(AC)/(BC)](https://img.qammunity.org/2020/formulas/mathematics/college/amvp72mqdxgsmhlzpjjb4yv0kclertcv1c.png)
![(2)/(HC)=(AH+HC)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/28ayp4rz38i1xz9yx4515xd1zhga34ug7j.png)
![4=HC(HC+2+HC)](https://img.qammunity.org/2020/formulas/mathematics/college/bl8p5l6dxpaworv7s9it7hq0vqa3v7hvk8.png)
![4=HC(2HC+2)](https://img.qammunity.org/2020/formulas/mathematics/college/icwugsxxflsafvtc48vr76ap8vxid3rkwc.png)
![4=2HC(HC+1)](https://img.qammunity.org/2020/formulas/mathematics/college/r4a8mzlwyrt6jouvg59r4vijl0fq91jcq5.png)
![2=HC(HC+1)](https://img.qammunity.org/2020/formulas/mathematics/college/ql6bblg6gor6oyd9ivnx838506sihl1zg4.png)
![\implies HC^2+HC-2=0](https://img.qammunity.org/2020/formulas/mathematics/college/lilc00rvs8a6739hcrpexkrbrkpo41o273.png)
![HC^2+2HC-HC-2=0](https://img.qammunity.org/2020/formulas/mathematics/college/rw6rgufwcjrw9sk7sgmxvwz92nsydzzqmu.png)
![HC(HC+2)-1(HC+2)=0](https://img.qammunity.org/2020/formulas/mathematics/college/l60b4weobd39r7o4xboct0843v6q800rxp.png)
![(HC+2)(HC-1)=0](https://img.qammunity.org/2020/formulas/mathematics/college/5vlduk8fuecsz4bqfp6ttza3782f977l7n.png)
By zero product property,
HC = -2 ( not possible ) or HC = 1
Hence, the measure of HC is 1 unit.