140k views
2 votes
Given a+b+c=7 and a^2+b^2+c^2=25 Find (a+b) ^2+(a+c) ^2+(b+c) ^2

User Dogiordano
by
7.3k points

1 Answer

5 votes

Answer:

26.

Explanation:

(a + b)^2 + (a+ c)^2 + (b + c)^2 = a^2 + b^2 - 2 ab + a^2 + c^2 - 2ac + b^2 + c^2 - 2bc

= 2( a^2 + b^2 + c^2 ) - 2( ab + ac + bc)

= 50 - 2(ab + ac + bc).............. (1).

(a + b + c)^2 = a^2 + ab + ac + ab + b^2 + bc + ac + bc + c^2

= a^2 + b^2 + c^2 + 2(ab + ac + bc)

= 25 + 2(ab + ac + bc)

But (a + b + c)^2 = 7^2 = 49. So:-

49 = 25 + 2(ab + ac + bc)

2(ab + ac + bc) = 49 - 25 = 24.

Substituting for this in (1) above:

(a + b)^2 + (a + c)^2 + (b + c)^2 = 50 - 24 = 26 (answer).

User Kischa
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories