Answer:
Area of composite figure is 44 squnits
Explanation:
We have to find the area of the composite figure which is formed by the the vertices (-5, -3), (-5, 2), (-3, 5), (-1, 2), (1, 5), (3, 2), (3, -1)
![AE=HF=\sqrt((3+5)^2+(2-2)^2)=8units](https://img.qammunity.org/2020/formulas/mathematics/high-school/6oxgufafu5791phjdcf8lmchur793abz2m.png)
C is the mid point as
![(-1,2)=((-5+3)/(2), (2+2)/(2))](https://img.qammunity.org/2020/formulas/mathematics/high-school/y9iynxjptk7g9ccvokscdaa05h8vkbqjzy.png)
∴ AC=CE=4 units
![HG=\sqrt((-5+5)^2+(-3+1)^2)=2units](https://img.qammunity.org/2020/formulas/mathematics/high-school/xqn34szc1qkbmboue7ka244h54b0mbsvu8.png)
![ar(ABC)=ar(CDE)=(1)/(2)* base * height](https://img.qammunity.org/2020/formulas/mathematics/high-school/2eqhst1wt76ekmmtuqp16hkcsxq5bbbtdd.png)
=
![(1)/(2)* 4* 3=6squnits](https://img.qammunity.org/2020/formulas/mathematics/high-school/vnsqkuoyk4ii1xsp1gwc3fitt7hqvyv83t.png)
![ar(AEFH)=AE* FH=8* 3=24 squnits](https://img.qammunity.org/2020/formulas/mathematics/high-school/4iytz25kn0i4v3skgg7n0p538neykxy0c4.png)
![ar(FGH)=(1)/(2)* HF * HG](https://img.qammunity.org/2020/formulas/mathematics/high-school/dmy6q77mfv8j18gt8q3oogel73bgdvn2vg.png)
=
![(1)/(2)* 8* 2=8squnits](https://img.qammunity.org/2020/formulas/mathematics/high-school/yawhbhisrpvx11gva92020wkmi0engfzst.png)
Area of composite figure=ar(ABC)+ar(CDE)+ar(AEFH)+ar(FGH)
= 6+6+24+8=44 squnits