Answer:
![(f-g)(x)=-x^2+x+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/bc20oee0vdxc5mbrbj5w8a8dinp26lvj1q.png)
Domain:
![(-\infty,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6k6cwn3rv3uz8czn6halfh7goigmp9t9zy.png)
Explanation:
we are given
![f(x)=9-x^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ebbdtpsry6c8mslyuymhjx0ajzktf8qtqk.png)
![g(x)=3-x](https://img.qammunity.org/2020/formulas/mathematics/high-school/ze6al01rawj611lsdvxqh08aua69rnq96g.png)
Calculation of (f-g)(x):
![(f-g)(x)=f(x)-g(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8cuzgwvem8zeohz7vcsv3l0z16dzjgq7gf.png)
we can plug it
![(f-g)(x)=9-x^2-(3-x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jwn55ufm5ykehkzva6neqjlwydi0fy9r9l.png)
now, we can simplify it
![(f-g)(x)=9-x^2-3+x](https://img.qammunity.org/2020/formulas/mathematics/high-school/qffw781j5sr756hpcoix8qukipp290z8x9.png)
![(f-g)(x)=6-x^2+x](https://img.qammunity.org/2020/formulas/mathematics/high-school/cdn107nxex7pfqjw3gqzebrrui6lbh7grj.png)
![(f-g)(x)=-x^2+x+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/bc20oee0vdxc5mbrbj5w8a8dinp26lvj1q.png)
Domain:
we know that
domain is all possible values of x for which any function is defined
and f(x),g(x) and (f-g)(x) are polynomials
so, domain will be all real numbers
so, we get
![(-\infty,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6k6cwn3rv3uz8czn6halfh7goigmp9t9zy.png)